6-5 Solving Square Root and Other Radical Equations.
 Name:

Solve. To start, rewrite the equation to isolate the radical.

1. $\sqrt{x+2}-2=0$
2. $\sqrt{2 x+3}-7=0$
3. $2+\sqrt{3 x-2}=6$

Solve.

4. $2(x-2)^{\frac{2}{3}}=50$
5. $2(x+3)^{\frac{3}{2}}=54$
6. $(6 x-5)^{\frac{1}{3}}+3=-2$
7. A The formula $\quad d=2 \sqrt{\frac{V}{\pi h}}$ relates the diameter d, in units, of cylinder to its volume V, in cubic units, and its height h, in units. A cylindrical can has a diameter of 3 in . and a height of 4 in . What is the volume of the can to the nearest cubic inch?
\qquad
\qquad Date \qquad
6-5
Practice (continued)

Solving Square Root and Other Radical Equations

Solve. Check for extraneous solutions. First, isolate the radical, then square each side of the equation.
10. $\sqrt{4 x+5}=x+2$
11. $\sqrt{-3 x-5}-3=x$
12. $\sqrt{x+7}+5=x$
13. $\sqrt{2 x-7}=\sqrt{x+2}$
14. $\sqrt{3 x+2}-\sqrt{2 x+7}=0$
15. $\sqrt{2 x+4}-2=\sqrt{x}$
16. Find the solutions of $\sqrt{x+2}=x$.
a. Are there any extraneous solutions?
b. Reasoning How do you know the answer to part (a)?
17. A floor is made up of hexagon-shaped tiles. Each hexagon tile has an area of $1497 \mathrm{~cm}^{2}$. What is the length of each side of the hexagon? (Hint: Six equilateral triangles make one hexagon.)

